

<カバーガラス培養「細胞実験 A & B」のイメージ>

(左 QR コードは実験サイト/Set 3、

右 QR コードは実験実施要領)

いつでも・どこでも・だれでも「迅速・簡便・省エネ・低コスト」で可能なカバーガラス細胞培養実験:

実験 A

単純 CG 培養

実験 B

CG お絵描き

実験4工程: Step1 準備→ Step2 細胞液の調製→ Step3 細胞液の滴下・培養→ Step4 固定染色

Step 1. 細胞培養用カバーガラス(CG)の準備 ・・・ 所要時間 5 分

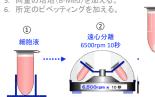
実験 A. スライドガラス上 にカバーガラス(CG)をテー プ止めの後、パラフィン色

鉛筆で液止め円を2つ描く

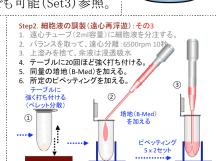
(雛形を利用)。CG 左上には油性ペンの目印を付す。

実験 B. 非接着処理済みのカバーガラス(MC/CG)を実験 A と同様に準備し、液止め円はひとつ。加温溶解したゼラチンを付けた綿棒で任意の絵文字を描き、

乾燥 30 分。


Step 2 (Exp. A/B 共通). 細胞液の調製 (細胞の遠心再浮遊) ・・・所要時間 5 分

この工程は代表者が担当する。 1) 細胞バッグに水平振動を与え分散させ、2) バッグを開封し、3) ピペッティングの後、4) その細胞液を遠心チューブ「A の場合は 1.5ml を1本へ、B では 2ml を2本のそれぞれへ」加える。 5) 遠心分離(6500rpm 10 秒あるいは 1800rpm 90 秒)の後、6) 上澄 みを捨て、7) 紙・ろ紙で余液を除き、8) タッピング。 9) 新品のスポイトで液体培地 B-Med を「A には 1.5ml、B は 1ml で2本のそれぞれへ」加え、10) ピペッティングで細胞を再浮遊させる(実験 B では2倍濃縮の細胞液2ml が完成する)。補足:遠心処理は「手作り遠心機」でも可能(Set3)参照。


- 2. バランスを取って、遠心分離:6500rpm 10秒。
- 3. 上澄みを捨て、余液は浸透吸水
- 4. テーブルに20回ほど強く打ち付ける。
- 5. 同量の培地(B-Med)を加える。

Step2. 細胞液の調製(遠心再浮遊):その2

1. 遠心チューブ(2m)容量 (1500 or my 10秒 (1500 or my 10秒 (1500 or my 10秒 (1500 or my 10秒 or my 10秒 (1500 or my 10秒 or my

上図(Step 2の操作イメージ):細胞液の調製 (細胞の遠心再浮遊):

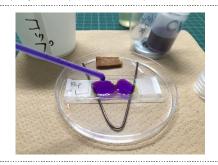
ID A B C D 濃度 万細胞/ml 50 100 150 200 PPTの横幅 4mm 4.5mm 5mm 6mm

遠心処理後の細胞ペレット(染色液 CV で可視化)。

左図の A は 50 万細胞/ml、 B は 100 万細胞/ml C は 150 万細胞/ml D は 200 万細胞/ml の細胞液を、それぞれ遠心チューブに 1.5ml 分注し、遠心分離、上澄 み除去後のペレット(PPT)の写真。実験 A には、80 万細胞/ml で 1.5ml 遠心分離なので、 図の A~B の大きさの細胞ペレットになるはず。*保管期間中に増殖するとペレットは大きくなる。その時は再浮遊後に適切に希釈し用いる。

Step 3. 細胞液(遠心再浮遊液)の滴下と細胞培養 ・・・・操作時間は数分、培養は任意(A は 20 分程度)

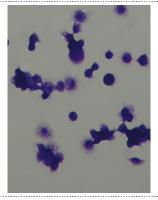
実験 A. 円内に 2 滴の液体培地 B-Med を滴下し、調製した細胞液(遠心再浮遊細胞)を1滴の後、28℃程度 5 分と 30 分培養。詳細はテキスト参照。

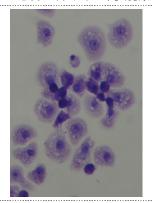

実験 B. 調製した細胞液(遠心再浮遊細胞)を円内に6滴加え、適所に静置し 培養 60-90 分。蓋などで乾燥防止を図る。室温培養(28℃以下で)。

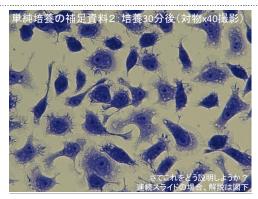
Step 4 (共通). 固定・染色 ···所用時間は約10分。

実験 A. 培養液を捨て、円内に固定液(Fix)を2滴3分。水洗後、染色液(CV)を2滴3分処理、水洗。

実験 B. 培養液を捨て、Fix は2滴3分。水洗後、CVは3滴3分処理、水洗。完成。




固定・染色のイメージ(固定処理のイメージは省略)


水封入(Step5)と観察

Step 5 (共通). 観察のための水封入と観察 ・・・ 所用時間は約 __ 分。

共通: 水封入法: 乾燥スライドガラス中央に水1滴を滴下。 CG 細胞面を下にして「滴下水」の上に載せる。 ガラス表面の水濡れを紙で吸水除去(CG を押し付けない)。 観察。

左:培養5分後、中:培養30分後、右:構造が明瞭な標本。右下のQRコードやWebサイト生物学演習「Set2」を参照。

<細胞標本観察の指針>

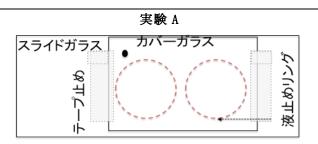
標本観察の方法の一例として「構造」という観点を用いる。とても平易な取り組みであるが、意外なことが分かるはず。

培養条件:1. 培養時間の差異(実験 A)、2. 細胞濃度の差異、3. 接着基質の差異(実験 B)、

観察の指針:(1)実体あるものには(2)構造がある。構造とは(3)要素の(4)配置とその(5)つながり。

<u> </u>			
構造	(の解析)	C. 繋がりと効果:区分・状態・結果	
Α.	a. 基盤、b. 細胞(1. 球状、2. 扁平状)、	a. 基質:ガラス、コラーゲン、メチルセルロース(血清アルブミン)、	
要素	c. その他	b. 細胞:1. 接着未伸展細胞(球状)、2. 接着伸展細胞(扁平状)	
В.	a. 単離独立	単離独立しているため伸展速度が速い。	
配置	:細胞が独立してバラバラに散在する。	1. 円形(無軸放射状)、2. 不定形(多軸放射状)、	
	b. 近接隣接	基質の開放域(未侵出域)へ仮足伸長がはじまり伸展する。コロニー状の隣	
	:複数の細胞が平面的に集まっている。	接配列が形成される(伸展細胞による細胞シートの形成)	
	c. 上下配位(凝集塊)	凝集状態のため伸展速度は遅い。下層の細胞は伸展するが上に位置した細	
	:上に乗った細胞が含まれる。	胞は基質との反応がないため球状を維持する。	
	d. 均等隣接:実験 B(底面充填密度)	接着基質に依存した単層細胞シート(形状)を形成する。	

細胞の状態に関わる平易な表現 (右 QR コードは「実験解説とその原理」など)


1. 浮いた(浮遊)・沈んだ(沈下)、2. 見える(確認)・見えない、3. 粒・粒々、4. 丸い(球状)・平たい(扁平)・広がった(伸展)、5. 張り付いた(接着/接着結合)、6. 散らばった(散在)・集まった(隣接・近接)・重なった(重層)、7. 多い(密度)・少ない、8. 濃く染まる(濃染)・薄く染まる(染色性が低い),

質問・作業:上の表に記した「B. 要素の配置:a-d」に基づき、構造の観点から簡単な絵にしてみましょう(上から見た図)。

速読マニュアル・所要時間(時間制限)

	実験 A は 単純 CG 培養実験(2サークル/CG)。 実験 B. お絵描き CG 培養実験(1サークル/CG))
工程	操作概要(物品ポイントや必要量については Set 5 を参照)。	時間
1.カバー ガラスの 準備	実験 A. スライドガラス上にカバーガラスをテープ止めの後、パラフィン色鉛筆で液止め円を	(分)
	2つ描く(雛形を利用)。CG 左上には油性ペンの目印を付す。	事前準備
	実験 B. 非接着処理済みのカバーガラス CG(MC/CG)を実験 A と同様に準備し、液止め円	(分)
	はひとつ。加温溶解ゼラチンを付けた綿棒で任意の絵文字を描く(強い筆圧でゆっくり)。送	事前準備
	風乾燥 30 分。	
2.細胞 液の調 製(遠心 再浮遊)	共通(1班4人の分量):本工程の操作は実施責任者やグループ代表者が担当。	(分)
	1) 細胞バッグに水平振動を与え分散させ、2) バッグを開封し、3) ピペッティングの後、4) そ	
	の細胞液を遠心チューブ「A の場合は 1.5ml を1本へ、B では 2ml を2本のそれぞれへ」加え	
	る。 5) 遠心分離(6500rpm 10 秒あるいは 1800rpm 90 秒)の後、6) 上澄みを捨て、7) 紙・ろ	
	紙で余液を除き、8) タッピング。 9) 新品のスポイトで液体培地 B-Med を「A には 1.5ml、B は	
	lml で2本のそれぞれへ」加え、10) ピペッティングで細胞を再浮遊させる(実験 B では2倍濃	
	縮の細胞液2ml が完成する)。	
3.細胞 液の滴	実験 A. 円内に 2 滴の B-Med を滴下し、調製した細胞液(遠心再浮遊細胞)を1滴の後、	(分)
	28℃程度培養。ただし、同時に固定のため、左を開始したその25分後に右を開始し5分培養	
下•培養	する同時固定する、培養時間は、右が5分、左が25分となる。	
	実験 B. 調製した細胞液(遠心再浮遊細胞)を円内に6滴加え、適所に静置し培養 90 分。	(分)
	蓋などで乾燥防止を図る。室温培養(28℃以上では Gel が溶解するから)。	
4. 固定・ 染色	実験 A. 培養液を捨て、円内に Fix は2滴 3 分。水洗後、CV は2滴 3 分処理、水洗。	(分)
	実験 B. 培養液を捨て、Fix は2滴3分。水洗後、CVは3滴3分処理、水洗。完成。	(分)
水封入 観察	共通: 水封入法:乾燥スライドガラス中央に水1滴を滴下。CG 細胞面を下にして「滴下	(分)
	水」の上に載せる。ガラス表面の水濡れを紙で吸水除去(CG を押し付けない)。 観察。	
標本化	共通:60s 速乾性「爪トップコート」厳守。 完全乾燥した染色細胞面にトップコートを1滴、ス	(分)
	ライドガラスを上からのせる。反転し完成。	
顕微鏡観察や考察の時は、視野に現れた「実体」について、「構造:要素の配置とその繋がり」の観点から		
確認し話し合ってください。どのような要素があるか、どのような繋がりがあるか、繋がり(配置)はどのような		
結果を招い	いたか?、用いた実験材料や方法を思い出しながら、丁寧に図式化してみてください。なお、実	
験原理や	解説は右の QR コード、を参照です	

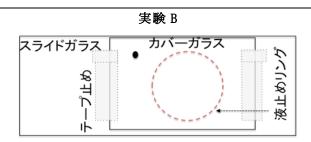



図1. ひな形: Step1 液止めサークルの雛形:パラフィン色鉛筆で重ね描き、液漏れ防止のため丁寧に太線にする。 お絵描き実験の**図柄選び**に悩む時は「あ・い・う・え・お」の 1 文字や「 \bigcirc \triangle X」などを描き試してください。 注意:実験 B では、ゼラチンの余液は紙ナプキンで吸い取り、強い筆圧でゆっくり描く、がコツです。

<実践学習への対応:実験材料のイメージと工程別の必要物品>

左図(実験 A/B が混在): 1. フィルムバッ グ細胞(12ml パック)、 2. 液体培地(15ml パック)、3. 切り取りスポイト(代用試験管): 遠心再浮遊細胞を移し替えてピペッティン グ(単離分散)用、4.代用試験管と培地、 5. 固定液(小試験管)、6. 染色液(クリスタ ルバイオレット:小試験管)、7.溶解ゼラチ ン、8. 綿棒、9. カバーガラス(CG)、MC/CG は掲載していない、 10. 操作スペース A4 用紙、11. スライドガラス、12. 紙コップ用 のオモリ(転倒防止用)、13. 紙ナプキン、 14. ハサミ、 15. パラフィン色鉛筆、 16. 栄研3号スポイト(2本)、**17**. 遠心チューブ 2ml サイズ(小試験管に入れた)、 18. 小型 プラカップ(紙コップでも良い)、19.紙コッ プ(廃液入れ)、20. 時計、

工程別の必要物品(4人/班あたりの必要数量:特性や仕様は Set5 を参照)

Step 1:カバーガラスの準備(CG培養器の調製)

実験A用: \Box 1)操作スペースA4用紙(4枚)、 \Box 2)スライドガラス(4枚)、 \Box 3)カバーガラス(4枚:CG)、 \Box 4)スコッチメンディングテープ、 \Box 5)ハサミ、 \Box 6)パラフィン色鉛筆(2本)、 \Box 7)細書き油性ペン(2本)、

実験B用: \Box 1)メチルセルロース(MC)処理済みのカバーガラス(MC/CG:4枚)、 \Box 2)スライドガラス(4枚)、 \Box 3) 溶解ゼラチン液(Gel:0.5/1.5ml微量遠心チューブ)、 \Box 4)クラフト綿棒(4本)、 \Box 5)紙ナプキン、 \Box 6)扇風機、

Step 2, 3:細胞液の調製と滴下培養 (実験A,B共通)

責任者用: \Box 1)フィルムバッグ細胞(FHLS細胞)と栄研3号<u>スポイト</u>(1本)、 \Box 3)50mlビーカー(細胞バッグのスタンド)、 \Box 2)培地(B-Med)と<u>スポイト</u>(1本)、 \Box 4)ハサミ、 \Box 5)小型紙コップ(細胞と培地の分注用: それぞれ2個、補足: 紙コップは転倒防止をすること)、 \Box 6)スポイト(細胞と培地の配布コップ用: それぞれ2本: **合計4本**)、

担当者用:□1)遠心チューブ(2mlサイズ:実験Aは1個、実験Bは2個)、□2)微量遠心分離機(約6500rpm・10秒))、□3)遠心チューブスタンド、□4)切り取りスポイト(代用試験管2本:細胞用と培地用)、□5)スポイト(細胞と培地の分注用:各1本)、□6)紙コップ(廃液入れ)、□7) 培養温度の設定用品、□8)湿潤箱

注意:細胞液や培地を配布する紙コップ/プラカップは必ず転倒防止策を行うこと)

Step 4: 固定·染色(実験A,B共通)

- \Box 1) <u>スポイト</u>(2本:使用済みを水洗で再使用)、 \Box 2) 固定液(N-Fix)、 \Box 3)染色液(CV クリスタルバイオレット)、
- □4)ガラス小試験管(固定液、染色液の分注・配布用)、□5)水道水、□6)水洗用の紙コップ(2個)、□7)紙ナプキン、□8)下記「常備品」。 必要に応じて「超速乾性の爪トップコート」

常備品(実験A,B共通)

□1)オモリ(紙コップ転倒防止用:ワッシャー)、□2)紙コップ多数(転倒防止、廃液入れなど)、□3)お湯(湯煎や培養温度など)、□4)温度計(赤外線温度計)、□5)タイマー、□5)ピンセット、□6)ゴミ袋、

補足: 栄研3号スポイトの必要数と注意事項

- * 班当たりのスポイト必要数は4本(Step2,3)。その内の2本は切り取りスポイト「代用試験管」とする(上図を参照)。
- * それ以外に、Step 2では、実施責任者が担当・用意・必要とするスポイトが5本。
- * 固定液・染色液の滴下には使用済みスポイトを水洗・水切りして用いる。
- * 意味不明な事項は必ず確認や問い合わせすること

注意:スポイトは用途を明記して使用する。混同して使用すると細胞培養と細胞運動に強い影響を与える。